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Abstract

Global databases have contributed to our understanding of alien, naturalised and invasive plant species 
distributions. Still, the role of species invasions in habitats, specifically in aquatic habitats, remains under-
explored at the global scale. Accordingly, a comprehensive global synthesis of the status of plant invasions 
in aquatic habitats has been missing. Here, we focus on macroecological patterns of naturalised non-in-
vasive and invasive plants in aquatic habitats using the recently built SynHab database. Amongst all the 
plant records compiled in SynHab, 592 are assigned to aquatic habitats, of which 183 are unique plant 
taxa (further termed ‘species’) belonging to 49 families. Of the total number of records, 462 refer to taxa 
with naturalised non-invasive occurrences and 130 to invasive occurrences. The species pool analysed 
here refers to 78 regions distributed across all botanical continents as defined by the World Geographical 
Scheme for Recording Plant Distributions. The number of naturalised non-invasive aquatic species is 
similar across different continents and biomes, but Tropical Asia had more and the Mediterranean zono-
biome had fewer invasive species than expected. Tropical Asia, Temperate Asia and Africa have the high-
est proportions of naturalised species that have become invasive, while across continents, invasive propor-
tions were highest for tropical and subtropical zonobiomes. New Zealand, Italy and California contained 
disproportionately more naturalised species than expected, given the area covered by aquatic habitat in 
those regions, whereas South Sudan, Papua New Guinea and Kyrgyzstan had disproportionately fewer 
species. In pairwise dissimilarity comparisons, all continents had distinct species compositions (from 
0.73 to 0.92 of the Jaccard dissimilarity index) and so did zonobiomes (0.69 to 1.00). The high propor-
tion of invasive species in Tropical Asia in comparison with terrestrial invasions in this region, indicates 
a greater susceptibility of warmer regions to aquatic plant invasions. This may be exacerbated by further 
naturalisations in the future, as data from temperate regions suggest a larger pool of available species.

Key words: Macrophyte invasion, plant invasion patterns, SynHab database

Introduction

Aquatic habitats are particularly prone to invasion by alien species due to several fac-
tors, including natural disturbance regimes (e.g. river flow variation and lake water 
level fluctuations), high levels of connectivity and anthropogenic activities (e.g. dam-
ming for hydropower and water extraction for agriculture) (Richardson et al. 2007). 
High levels of connectivity, both natural and anthropogenic (such as raw water trans-
fer schemes and canals), make monitoring and managing pathways of invasion in 
aquatic habitats difficult (Waine et al. 2025). Invasive aquatic plants (macrophytes) 
often act as autogenic engineers and primary producers (Ricciardi and MacIsaac 
2010), i.e. they transform freshwater systems, change habitat structure (Valley and 
Bremigan 2002; Ceschin et al. 2020) and reduce water quality by altering flow and 
primary productivity (Perna and Burrows 2005; Gallardo et al. 2016; South et al. 
2016), resulting in changes in local native diversity (Schooler et al. 2006). In addi-
tion, projected accumulations of naturalised alien plant species suggest faster increas-
es in aquatic systems than in terrestrial habitats (Seebens et al. 2021), indicating that 
future impacts are likely to intensify. The severity of impacts caused by alien plants 
is magnified because aquatic habitats are extremely diverse relative to the area they 
occupy, compared to other habitats (Román-Palacios et al. 2022).

The ecological impacts of invasive alien plant species and management efforts 
impose substantial economic costs. From 1975 to 2040, the documented global 
costs of invasive macrophytes are projected to reach US$ 32.8 billion (in 2017 
dollars, Macêdo et al. 2024). However, this figure likely represents a significant 
underestimation due to data limitations and geographical gaps in current research 
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(Macêdo et al. 2024), crucially concerning the underestimated costs of invasive 
plants (Novoa et al. 2021). This raises additional concerns about the extent to 
which the economic costs of invasive plants in aquatic habitats may be reliably 
captured. As such, updated knowledge of regional levels of invasion is crucial for a 
better understanding of impacts and cost estimates.

The World’s 100 worst invaders list (Lowe et al. 2000) provides examples of 
the harmful effects that plant invasions can have on aquatic habitats. One of the 
globally most prominent invaders is water hyacinth (Pontederia crassipes Mart., 
synonym Eichhornia crassipes (Mart.) Solms), which is native to South America 
and has spread to over 70 countries (Gezie et al. 2018). Pontederia crassipes is a 
fast-growing floating macrophyte that forms dense mats on the water surface, al-
ters habitat structure and disrupts the ecological functioning of aquatic ecosystems 
(Tobias et al. 2019). This species also has direct socioeconomic impacts, including 
reduced navigability and recreational quality, restricted water supply for agricul-
ture due to damaged pipe systems and reduced access to fishing grounds and boat-
ing (Kateregga and Sterner 2009; Villamagna and Murphy 2010). Similarly, Azolla 
filiculoides Lam., often found alongside Pontederia crassipes and Pistia stratiotes L., 
is a small (< 25 mm) floating macrophyte that impacts physical and chemical wa-
ter features, reduces the richness and biomass of macrophytes, alters zooplankton 
composition and reduces the survival of amphibian larvae (Pinero-Rodríguez et al. 
2021). Lagarosiphon major (Ridl.) Moss is a submerged macrophyte (Howard-Wil-
liams and Davies 1988) that forms dense underwater beds, outcompeting native 
macrophytes in the range it has invaded (Martin et al. 2018).

Specific inherent biological attributes (such as functional traits) determine the 
invasiveness of species and increase their potential to become invasive (Gioria et 
al. 2023) by interacting with native biota and the environment (Pyšek et al. 2020). 
Additionally, one of the most important factors explaining the success of plant in-
vasions is propagule pressure (e.g. Von Holle and Simberloff 2005; Colautti et al. 
2006; Cassey et al. 2018), which also applies to invasive macrophytes (Chadwell 
and Engelhardt 2008; Xie et al. 2013). High levels of connectivity can facilitate the 
spread of propagules, increasing dispersal distances for invasive plants within and be-
tween waterbodies in aquatic habitats (Richardson et al. 2007; Leuven et al. 2009). 
For example, natural flood events accelerate the dispersal process by facilitating the 
movement of propagules within catchments (Gurnell et al. 2008; Čuda et al. 2017). 
Climate-related changes to the flow regime further facilitate the spread of propagules 
by increasing the frequency of extreme floods (Pattison et al. 2017). In addition, 
dams create lentic habitats with slow-moving waters, which are preferred by Azolla, 
Pistia and Pontederia species. Given the expected increase in dam construction to 
mitigate climate-driven rainfall reductions, this may result in enhanced proliferation 
of these macrophytes. Raw water transfer schemes (water diversions) move large 
volumes of freshwater between catchments via complex infrastructure networks, fa-
cilitating the long-distance spread of invasive species (Waine et al. 2024a, b).

Research on plant invasions in aquatic habitats is under-represented compared 
to terrestrial habitats, particularly in the Tropics (Evangelista et al. 2014; Havel et 
al. 2015; McKnight et al. 2017), with certain species or taxonomic groups domi-
nating the literature (Stevenson et al. 2023). Here, we utilise the newly-developed 
SynHab database (https://www.synhab.com/the-project), which contains infor-
mation on plant naturalisations and invasions in specific habitat types worldwide 
(Pyšek et al. 2022; Dawson et al. 2025), to achieve a more balanced perspective of 

https://www.synhab.com/the-project
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the overall diversity of naturalised plants in aquatic habitats. We address this knowl-
edge gap by asking the following questions: (i) Which continents and biogeograph-
ical regions (zonobiomes) have the highest levels of naturalisation and invasion of 
plants in aquatic habitats? (ii) Which aquatic naturalised non-invasive and invasive 
plants are most widely distributed? (iii) Does the vulnerability of aquatic habitats to 
naturalisations and invasions of plants differ in temperate vs. tropical regions? (iv) 
Which regions (regions or states) harbour more naturalised plant species in aquatic 
habitats than expected? (v) Which regions are more similar in terms of naturalised 
plant species composition in aquatic habitats? (vi) Which naturalised aquatic plant 
species are indicative of continents and zonobiomes?

Materials and methods

Habitat classification and macrophyte definition

Habitat classification, adapted from Hejda et al. (2015) for the SynHab database, 
resulted in 14 categories (Pyšek et al. 2022). The aquatic habitat is a category de-
fined as “waterbodies and streams with submerged and floating plant species”. 
Macrophytes can be defined in several ways, with some definitions including mac-
roalgae (e.g. Chambers et al. 2008); however, here we restrict our focus to aquatic 
vascular plants. Species were assigned to the aquatic habitat if they exhibited growth 
in water as submerged or floating, including littoral species that can cope with 
long-term flooding, with roots anchored below the water level. Some species, such 
as Iris pseudacorus L., Eleocharis palustris (L.) Roem. & Schult., Juncus effusus L. 
and Jacobaea aquatica (Hill) G.Gaertn., B.Mey. & Scherb., can grow in the littoral 
zones of freshwater or brackish waterbodies, as well as in mud. In such cases, they 
were assigned to both aquatic and wetland habitats in SynHab, of which only the 
former is dealt with in the present paper. Species inhabiting mud, but intolerant to 
prolonged flooding, such as Lysimachia nummularia L. were excluded. Dimorphic 
species, such as Alternanthera philoxeroides (Mart.) Griseb., exhibiting mud-dwell-
ing and littoral forms, were also affiliated with both aquatic habitats and wetlands. 
In such cases, species were assigned to the aquatic habitat if the habitat descriptions 
explicitly confirmed growth in a submerged environment of freshwater lakes, rivers, 
running waters, coastal basins or streams. Species that grow along rivers, but not 
in the water were not included. We thus included also aquatic vascular plants that 
are not exclusively aquatic, but that are important invaders in the aquatic habitat.

Data acquisition

The data on habitat affiliations for the SynHab database were extracted from lit-
erature sources (regional checklists of alien floras), where the verbal description of 
habitats allowed unequivocal assignment of a given species (see Suppl. material 1: 
table S1 for the complete references). If published sources lacked information on 
habitat affiliations, we invited the authors of original publications to collaborate 
and provide habitat affiliations for SynHab. The SynHab project leaders (PP, MH, 
AK) assessed the received information to harmonise the habitat classification with 
other datasets and then the final habitat affiliations were agreed upon in collabo-
ration with data providers. In total, 78 regions (countries or states) from all conti-
nents were included (Suppl. material 1: table S1).
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Each plant species was assigned the invasion status as ‘naturalised’ or ‘invasive’ 
in the region, following the definitions of Richardson et al. (2000) and Blackburn 
et al. (2011) ca; note that the species’ invasion status can vary across different re-
gions. Invasion status was assigned, based on information in the GloNAF (Global 
Naturalized Alien Flora) database (van Kleunen et al. 2015, 2019; Pyšek et al. 
2017; Davis et al. 2025) or inferred from the description in the original source or 
provided by data contributors for their regions. In the context of the analyses de-
scribed below, the term ‘naturalised’ refers to all naturalised taxa and is composed 
of two separate subsets: ‘naturalised non-invasive’ and ‘invasive.’

Each taxon name, as given in the original source, was standardised according 
to The World Checklist of Vascular Plants (WCVP) database (https://powo.sci-
ence.kew.org/about-wcvp; Govaerts et al. 2021) using the rWCVP package for R 
(Brown et al. 2023). Accepted names of the species were used in the analyses to 
enable species comparisons amongst regions. Four taxa were identified at the sub-
species level, but were merged with the corresponding species level for analyses.

Habitat area

To quantify the area of aquatic habitats within each region, gridded global land-cover 
data, with a spatial resolution of 300 m, were acquired from Defourny et al. (2023). 
These data comprised 37 land-cover classes, conforming to the United Nations Land 
Cover Classification System (UN-LCCS) (Di Gregorio and Jansen 2005). We convert-
ed the year 2019 raster to a shapefile and intersected it with SynHab regions for further 
analysis. We excluded permanent snow and ice classes, which resulted in 35 classes 
included in the analyses. Water surface area of classes was summed for use in analyses.

Biogeographical variables: continents and zonobiomes

Each of the 78 regions for which data on naturalised plant species in aquatic hab-
itats were available was assigned to a continent and a state or country (levels 1 and 
4, respectively, of the TDWG World Geographic Scheme for Recording Plant Dis-
tributions; Brummitt 2001): Northern America (data available for n = 13 regions); 
Southern America, n = 11; Africa, n = 16; Europe, n = 16; Temperate Asia, n = 9; 
Tropical Asia, n = 11; and Australasia, n = 2. Only one record was sampled in the Pa-
cific, which was not considered in the analyses. Further, regions were assigned to one 
of the following zonobiomes: I. Tropical (equatorial), n = 18 regions; II. Tropical (sa-
vannah), n = 15; III. Subtropical (arid), n = 7; IV. Mediterranean, n = 8; VI. Temper-
ate (nemoral), n = 17 regions; VII. Arid temperate (continental), n = 4; VIII. Cold 
temperate (boreal), n = 1; and n = 8 regions were assigned as “multiple” zonobiomes 
(Chile, China, Flores, Faial and Santa Maria, Azores, Florida, New South Wales, 
Russia Kostroma, Russia Middle Volga and Russia Novosibirsk based on Walter and 
Breckle (1991). While some regions, categorised as ‘multiple’, may encompass the V. 
Warm Temperate Zonobiome, no regions were exclusively assigned to it.

Statistical analyses

To test whether naturalisation and invasion in aquatic habitats differ amongst 
continents and zonobiomes, we used generalised linear models (GLM) with 
Poisson distribution. Using standardized residuals from generalised linear 

https://powo.science.kew.org/about-wcvp
https://powo.science.kew.org/about-wcvp
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models (GLMs), we determined if observed species richness was significantly 
higher or lower than expected across zonobiomes and continents. Statistical 
significance was assessed by comparing these residuals to critical values corre-
sponding to P < 0.05 (± 1.96), P < 0.01 (± 2.58) and P < 0.001 (± 3.29). Posi-
tive values indicate higher and negative values indicate lower naturalised species 
richness than expected by chance.

The species-area relationship was calculated by fitting a linear model to the 
number of all naturalised species recorded and the area of aquatic habitat in 
each region on a log-log scale. To compare the dissimilarity of the regions in 
terms of their naturalised species composition in aquatic habitats, we calculated 
the Jaccard dissimilarity index using the “betapart” package (Baselga and Orme 
2012; Baselga et al. 2023). To identify which species were significant indica-
tors of each continent and zonobiome, we used the “multipatt” function of 
the indicator value analysis (IndVal) in the R package “indicspecies” (Dufrêne 
and Legendre 1997; De Cáceres and Legendre 2009), calculated considering 
groups of regions within each continent or zonobiome. Complementary to the 
species composition analysis, the indicator value analysis determines groups of 
indicator species by measuring their association with each group (continent or 
zonobiome) or combination of groups and it does not explicitly consider cli-
mate, local environment or introduction history.

All statistical analyses were performed in R version 4.4.1 (R Core Team 2024).

Results

Naturalised and invasive species numbers

Of the 585 records in aquatic habitats, 458 referred to naturalised, non-invasive 
occurrences and 127 to invasive occurrences. The same species can be naturalised, 
non-invasive in one region and invasive in another; thus, the focus was on the 
number of occurrences rather than the number of species. In total, we recorded 
183 naturalised plant taxa (further referred to as ‘species’ for simplicity) belonging 
to 46 families and 88 genera; of these 183, there were 52 classified as invasive in at 
least one region. The 10 families with the largest number of species were Hydro-
charitaceae, Plantaginaceae, Cyperaceae, Poaceae, Araceae, Alismataceae, Onagra-
ceae, Nymphaeaceae, Pontederiaceae and Salviniaceae.

Naturalised aquatic species occurred in 78 regions on all continents (Suppl. 
material 1: table S1). Of the sampled regions, 34 (i.e. 43.6%) contained infor-
mation on invasive species. New Zealand had the largest number of naturalised 
species (n = 37), followed by California and Italy (n = 29 each), France (n = 27), 
Florida (n = 23), Chile and Virginia (n = 20). Species recorded as naturalised in 
at least one region were native to Temperate Asia (n = 94), Northern America 
(n = 87), Tropical Asia (n = 81), Africa (n = 79), Southern America (n = 77), Eu-
rope (n = 58), Australasia (n = 45) and the Pacific (n = 21). The most widespread 
invader, occurring in 55.7% of the sampled regions (n = 43), was Pontederia 
crassipes (this species was considered invasive in 15 of the 43 regions), followed 
by Pistia stratiotes and Elodea canadensis Michx., Azolla filiculoides, Elodea densa 
(Planch.) Casp. and Myriophyllum aquaticum (Vell.) Verdc., all occurring in at 
least 25% of the sampled regions (Table 1). In contrast, 105 species (56.6% of 
all sampled species) were found in only one region.
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Biogeographical patterns

The numbers of naturalised aquatic species (considering naturalised non-invasive 
and invasive species together) per continent and zonobiome were not significantly 
different from the values expected by chance. However, a different pattern was evi-
dent for invasive species. Aquatic habitats in Tropical Asia harboured more invasive 
species than expected; the opposite was found for the Mediterranean zonobiome, 
where invasive aquatic species were under-represented (Table 2). Using the pro-
portion of naturalised species that have become invasive as a measure, Tropical 
Asia, Africa and Tropical Asia ranked the highest amongst continents, with 58.6%, 
42.3% and 40.7%, respectively (Fig. 1). Tropical zonobiomes, both Savannah 
(44.4%) and Equatorial (43.5%) and the Subtropical Arid zonobiome (38.7%) 
had the greatest proportions of naturalised species recorded as invasive (Fig. 1). No 
species were sampled in the Warm Temperate zonobiome.

A continental-scale comparison of naturalised species richness in aquatic versus 
terrestrial habitats, using a combined dataset of all naturalised species, demon-
strated that in Africa and Temperate Asia, the observed proportion of aquatic nat-
uralised species was significantly lower than expected by chance (Table 3). For 
zonobiomes, the aquatic habitats in the Mediterranean harboured disproportion-
ally more and Warm Temperate fewer (none) naturalised species than terrestrial 
habitats in this region (Table 3, Fig. 2).

For invasive species, the number of aquatic compared to terrestrial was 
higher than expected by chance in Tropical Asia and Northern America and 
lower in Temperate Asia (Table 3). Regarding zonobiomes, the representation 

Table 1. The top 21 aquatic species recorded in the largest number of SynHab regions presented by 
invasion status. These represent 11.3% of species recorded and 50.3% of all records. Am-S = South-
ern America, Am-N = Northern America, EU = Europe, AUS = Australasia, AS-temp = Temperate 
Asia, AS-trop = Tropical Asia, AF = Africa; I = number of records as invasive, N = number of records 
as naturalised non-invasive.

Species I N Total Continent of origin

Pontederia crassipes 15 28 43 Am-S
Pistia stratiotes 7 16 23 AF, Am-N, Am-S
Elodea canadensis 7 15 22 Am-N
Azolla filiculoides 7 14 21 Am-N, Am-S, Antarctica
Elodea densa 5 15 20 Am-S
Myriophyllum aquaticum 6 14 20 Am-S
Nasturtium officinale 2 17 19 AF, AS-temp, AS-trop, EU
Salvinia molesta 10 7 17 Am-S
Hydrilla verticillata 5 11 16 EU, AF, AS-temp, AS-trop, AUS
Alternanthera philoxeroides 6 7 13 Am-S
Potamogeton crispus 1 9 10 EU, AF, AS-temp, AS-trop, AUS
Myriophyllum spicatum 3 7 10 EU, AF, AS-temp, AS-trop, Am-N
Pontederia vaginalis 1 8 9 AS-temp, AS-trop, AUS
Elodea nuttallii 2 6 8 Am-N
Lemna minuta 2 7 9 Am-N, Am-S
Veronica anagallis-aquatica 8 8 AF, AS-temp, AS-trop, EU
Nymphoides peltata 1 6 7 AF, AS-temp, AS-trop, EU
Acorus calamus 7 7 AS-temp, AS-trop, Am-N
Typha angustifolia 1 5 6 EU, AF, AS-temp, AS-trop, Am-N
Nelumbo nucifera 6 6 EU, AS-temp, AS-trop, AUS
Sagittaria latifolia 6 6 Am-N, Am-S
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Figure 1. Proportion of invasive species amongst naturalised species in continents (a) and in zono-
biomes (b).
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Figure 2. Naturalisation in aquatic habitat compared to terrestrial habitats (mean for all other habi-
tats) by continent (a) and zonobiome (b). The blue line shows the theoretical linear increase in mean 
naturalisation in both aquatic habitat and terrestrial habitats, connecting zero and mean naturalisa-
tion in each habitat (marked by a blue point).

Table 2. Number of naturalised non-invasive and invasive aquatic species in continents and zonobi-
omes. Light orange cells indicate more and blue fewer alien species than expected by chance based on 
the generalised linear models. Significance indicated by asterisks (* P < 0.05).

Continent Naturalised non-invasive Invasive

Africa 20 11
Temperate Asia 18 11
Tropical Asia 21 17*
Australasia 39 6
Europe 67 14
Northern America 61 15
Southern America 45 10

Zonobiome

Boreal 3 0
Continental 8 1
Mediterranean 69 10*
Multiple 50 18
Nemoral 79 19
Subtropical Arid 22 12
Tropical Equatorial 33 17
Tropical Savannah 27 16
Warm Temperate 0 0
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of invasive species in aquatic compared to terrestrial habitats was lower than 
expected in Warm Temperate areas, where no invasive aquatic species were 
recorded in our dataset (Table 3).

Species-area relationships

The species-area relationship highlights that specific regions contain dispropor-
tionately more naturalised species than would be expected, based on the area of 
aquatic habitat in each region. This was most pronounced in New Zealand, Italy, 
and California. Other regions that fall below this expectation include South Su-
dan, Papua New Guinea and Kyrgyzstan (Fig. 3).

Species composition

Overall, species composition differed across continents and zonobiomes. All 
pairs of continents exhibited a high dissimilarity, as revealed by the Jaccard 
dissimilarity index ranging from 0.73 to 0.92 (Fig. 4a). Tropical Asia and Tem-
perate Asia had the lowest mutual dissimilarity (0.73), followed by Europe 
and Northern America (0.78), Tropical Asia and Southern America (0.80) and 
Temperate Asia and Europe (0.81). The most distinct pair of continents was 
Africa and Australasia (0.92).

In relation to zonobiomes, the dissimilarity ranged from 0.68 to 1.00. The 
lowest dissimilarity was found between Mediterranean and Nemoral (0.68), 
followed by Subtropical Arid and Tropical Savannah (0.75) and Nemoral and 
Tropical Equatorial (0.77). Boreal and Continental, as well as Boreal and Trop-
ical Equatorial zonobiomes differed most from other zonobiomes in their spe-
cies composition (Fig. 4b).

Table 3. Number of naturalised and invasive species in different habitat types (aquatic, terrestrial) 
by continents and zonobiomes. Significance is indicated by asterisks (** P < 0.001, * P < 0.05) and 
direction by colours: light orange cells show more and blue fewer species than expected by chance, 
based on the generalised linear models.

Continent Naturalised aquatic Naturalised terrestrial Invasive aquatic Invasive terrestrial

Africa 20** 1,729 11 319
Temperate Asia 18* 1,420 11* 468
Tropical Asia 21 1,008 17* 208
Australasia 39 2,000 6 183
Europe 67 2,548 14 319
Northern America 64 2,384 15* 196
Southern America 45 1,774 10 313

Zonobiome

Boreal 3 204 0 5
Continental 9 571 1 98
Mediterranean 70** 2,017 10 231
Multiple 50 2,748 18 520
Nemoral 79 3,243 19 342
Subtropical Arid 22 819 12 146
Tropical Equatorial 33 1,747 17 482
Tropical Savannah 27 1,202 16 217
Warm Temperate 0* 139 0** 90
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Indicator species

The most widespread invaders (Table 1, Fig. 5) occurred in at least 25% of the sam-
pled regions. Indicator species analysis identified indicative species of some continents 
and zonobiomes, as well as certain widespread species that are typical of a combina-
tion of two or more continents and zonobiomes. Australasia had the largest number 
of indicator species (n = 30), while Ludwigia palustris (L.) Elliott and Lagarosiphon 
major had the highest significance values. In Europe, Lemna minuta Kunth and Elo-
dea nuttallii (Planch.) H.St.John were selected as indicator species and, in Northern 
America, they were Myriophyllum spicatum L., Veronica anagallis-aquatica L. and Ty-
pha angustifolia L. (Suppl. material 1: table S2). A single species, Juncus effusus, was 
selected as an indicator of the Boreal zonobiome (Suppl. material 1: table S3). Elodea 
canadensis was selected for the groups of two or more zonobiomes: Mediterranean, 
Nemoral and for the “Multiple” category, whereas the most widespread species, Pont-
ederia crassipes, was indicative of all zonobiomes, except Boreal and Nemoral.

Discussion

Our research sheds light on global patterns of naturalised and invasive plants 
in aquatic habitats. A considerable number of naturalised non-invasive and 
invasive species were recorded in tropical regions, raising a concern highlighted 

Figure 3. Species-area relationships of aquatic habitats. LogS represents the decadic logarithm of the num-
ber of species sampled, while LogArea represents the decadic logarithm of the aquatic habitat area (in km2) 
for each region. Grey area denotes 95% confidence interval and the red line represents the regression line.
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by the higher proportion of invasive species within naturalised flora in tropi-
cal zonobiomes (Fig. 1). Furthermore, aquatic habitats harbour more invasive 
species than expected, particularly in Tropical Asia (Table 3), which is consis-
tent with previous findings linking higher numbers of introduced macrophyte 
species to an increase in both higher annual temperature and higher longitude 
(Murphy et al. 2019; Lobato-de Magalhães et al. 2023). Moreover, the high 
number of alien aquatic plants in Tropical Asia is likely a result of a combina-
tion of suitable environmental conditions: warm climate, high nutrients and 
numerous intentional and accidental introductions, combined with a large hu-
man influence and deforestation in the area (Wu and Ding 2019).

However, data on global aquatic naturalised flora in the SynHab database re-
mains incomplete. SynHab was not designed exclusively for aquatic habitats and 
data available in the database do not allow us to distinguish the role of specific 

Figure 4. Jaccard dissimilarity of naturalised aquatic species composition. Grey shades represent 
higher similarity (= lower dissimilarity) amongst sites and purple shows the lowest similarity (= com-
plete dissimilarity) amongst continents (a) and zonobiomes (b).
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finer habitats, such as lakes, rivers and ponds. The aim of SynHab was to col-
lect data on the distribution of naturalised species in habitats worldwide, en-
abling comparisons amongst them. Therefore, only regions for which there was 
comprehensive information on affiliations to all habitat types were considered. 
Thus, data is lacking from many regions of the world. Still, our dataset provides 
a reasonably thorough account of what is known about naturalised alien species 
globally, despite the relatively low research effort in aquatic compared to terres-
trial habitats (Evangelista et al. 2014; Havel et al. 2015; McKnight et al. 2017). 
According to the most comprehensive assessment of the world’s naturalised flora 
(Pyšek et al. 2017), aquatic species comprised only 0.9% of the total species 
reported. The first edition of the GloNAF database (van Kleunen et al. 2019) 
included 147 taxa, whereas our updated dataset has 183 taxa.

Our SynHab-based analysis reveals that the highest numbers of naturalised 
aquatic species were recorded in New Zealand, Italy, California and France, 
i.e. regions with high Gross Domestic Product (GDP), a warm climate and a 
long history of plant introductions. Research on biological invasions in New 
Zealand is extensive and a remarkable number of introduced macrophyte spe-
cies have been previously reported (Lobato-de Magalhães et al. 2023). Hussner 
(2012) suggested that Italy and France have the highest number of alien aquat-
ic plant species in Europe (34 species each). These two countries are known 
gateways for alien aquatic species introductions in Europe, especially through 
aquaculture (Nunes et al. 2014). In addition, France and Italy practise ex-
tensive rice cultivation (in the Camargue and the Po Valley, respectively) and 
species introduced into rice fields can subsequently colonise other aquatic hab-
itats. According to Hussner et al. (2010), the number of alien aquatic plant 
species has increased rapidly in recent decades, doubling in Germany from 12 
to 24 between 1980 and 2009. This has been attributed to an increase in the 

Figure 5. Invasion by Pontederia crassipes in Hawaii (a) and in the canal in Bayou Chevreuil, Louisiana, 
USA (b); Pistia stratiotes in its native range, Argentina (c) and in Panama (d). Photos by MH and JČ.
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movement of ship ballast water and the continued popularity of the aquarium 
trade over the last 50 years, whilst improved monitoring and reporting may 
also contribute to this observed increase.

The global pattern of aquatic macrophyte distribution suggests that most spe-
cies have a limited range across the world’s ecozones (Murphy et al. 2019, 2020; 
Lobato-de Magalhães et al. 2023). Our study also reveals, despite the data lim-
itations in SynHab, that naturalised species tend to be region-specific, exhibiting 
high dissimilarity between continents and zonobiomes (Fig. 4). More specifically, 
we identified distinct species indicative of specific continents and zonobiomes 
(Suppl. material 1: tables S2, S3). Some indicator species occur in similar envi-
ronments that match those in their native range, such as Juncus effusus, invading 
in the boreal zonobiome and native to temperate regions. However, a subset of 
~ 1.2% of the total macrophyte species have broad ranges (Murphy et al. 2019). 
For instance, Pontederia crassipes was sampled in 36.8% of the world’s 238 grid 
cells 10 × 10° (latitude × longitude) in size covering the aquatic habitat area (Loba-
to-de Magalhães et al. 2023). Our results show that certain species serve as indi-
cators for invaded regions that are climatically different from their native ranges, 
which is expected, as aquatic species may be less limited by climatic conditions 
than terrestrial species. Pontederia crassipes, the most widespread species in our 
dataset, is native to southern tropical America and primarily grows in the wet 
tropical biome. However, P. crassipes has been assigned as indicative not only of 
Tropical Equatorial and Tropical Savannah, as expected, but also of Continental, 
Mediterranean, Multiple and Subtropical Arid zonobiomes. Pistia stratiotes, na-
tive to the Tropics and Subtropics and primarily also growing in the wet tropical 
biome, is an indicator of Tropical Savannah and has expanded into Subtropical 
Arid and Continental zonobiomes. Elodea canadensis, native to southern Cana-
da and the United States, mostly in the Temperate zonobiome, is indicative of 
Nemoral and Mediterranean, and zonobiomes classified as Multiple.

Invasive alien macrophytes are considered more successful than native macro-
phytes due to the absence of natural enemies or competitors, higher tolerance to 
eutrophication and altered hydrology (Coetzee and Hill 2012). Moreover, high-
er temperatures are expected to increase the invasibility of temperate habitats by 
tropical macrophytes (Adebayo et al. 2011). An increase in temperature, CO2 
and nutrients can potentially benefit emergent and floating macrophytes (Lind 
et al. 2022). Indeed, P. crassipes and P. stratiotes (both floating macrophytes) are 
more widely distributed than other species and disperse easily. The distribution 
patterns of these species, as revealed in our study, suggest variation in the plasticity 
of their invasiveness. Lind et al. (2022) suggested that submerged macrophytes 
may be negatively affected by climate change and other anthropogenic pressures. 
However, in our study, the submerged macrophyte E. canadensis was reported 
across multiple zonobiomes, suggesting we should not underestimate the capacity 
of submerged macrophytes to respond positively to global change.

Projected climate change impacts pose future challenges, notably the emer-
gence of invasion hotspots, particularly in the United States, north-eastern Eu-
rope, southwest Australia and New Zealand (Bellard et al. 2013; Gillard et al. 
2017). Conversely, Indonesia, Pacific islands, central Africa and southern Brazil 
are predicted to be less affected (Bellard et al. 2013). This projected pattern sug-
gests a greater increase in invasive species in the Northern Hemisphere compared 
to the Southern Hemisphere, with tropical regions potentially exhibiting lower 
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invasibility (Bellard et al. 2013). While Bellard et al. (2013) focused on a limited 
number of aquatic species, more recent work modelling future invasive macro-
phyte distributions has indicated suitable habitat expansion in Europe and North 
America (Gillard et al. 2017), specifically for three aquatic plant taxa (Elodea densa, 
Myriophyllum aquaticum and Ludwigia spp.). Our results highlight the presence 
of invasive species in tropical aquatic habitats. Further efforts to document natu-
ralised species, especially in tropical regions, are essential to disentangle the risk of 
invasion in the Tropics by alien species.
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