

Research Article

A global synthesis of naturalised and invasive plants in aquatic habitats

Alessandra Kortz¹⁰, Martin Hejda¹⁰, Jan Čuda¹⁰, Zarah Pattison²⁰, Josef Brůna³⁰, Ana Novoa^{1,40}, Jan Pergl¹, Pavel Pipek^{1,5}, Kateřina Štajerová¹, Paulina Anastasiu⁶, Michael Ansong⁰, Margarita Arianoutsou⁸⁰, Julie F. Barcelona⁹⁰, Suneeta Bhatta^{1,50}, Farzaneh Bordbar¹⁰⁰, Israel Borokini¹¹, Laura Celesti-Grapow¹², Eduardo Chacón-Madrigal^{13,14}, Wayne Dawson¹⁵, Dorjee¹⁶, Franz Essl¹⁷, Lilian Ferrufino-Acosta¹⁸, Estrela Figueiredo¹⁹, Rodolfo Flores²⁰ Guillaume Fried²¹, Nicol Fuentes²², Pablo Galán²³, Christian Gilli²⁴, Michael Glaser¹⁷ José Ramón Grande Allende²⁵, Zigmantas Gudžinskas²⁶, Rachael Holmes²⁷, Philip E. Hulme²⁸, Inderjit²⁹, Eun Su Kang³⁰, Holger Kreft³¹, Dan W. Krix³², Ingolf Kühn³³, Omar Lopez^{34,35} AnaLu MacVean³⁶, Trobjon Makhkamov^{37,38}, Elizabete Marchante³⁹, Hélia Marchante⁴⁰ Alfred Maroyi⁴¹, Rachid Meddour⁴², Pierre Meerts^{43,44}, Sharif A. Mukul^{45,46,47}, Brad R. Murray⁴⁸ Megan L. Murray⁴⁸, Daniel L. Nickrent⁴⁹, Prince E. Norman⁵⁰, Ali Omer^{17,51}, Annette Patzelt⁵² Pieter B. Pelser⁹⁰, Joan Pino^{53,540}, Marc Riera⁵³⁰, Dagoberto Rodríguez Delcid⁵⁵⁰, Julissa Rojas-Sandoval⁵⁶⁰, Roser Rotchés-Ribalta^{53,570}, José Yader Sageth Ruiz-Cruz^{58,590}, Stepan Senator⁶⁰. Alexander N. Sennikov⁶¹. Bharat Babu Shrestha⁶². Gideon F. Smith¹⁹. Sima Sohrabi⁶³, Barbara Tokarska-Guzik⁶⁴, Mark van Kleunen^{65,66,67}, Montserrat Vilà^{68,69} Viktoria Wagner⁷⁰, Patrick Weigelt ^{31,71}, Marten Winter⁷², Ayşe Yazlık⁷³, Elena Zykova⁷⁴, Petr Pyšek^{1,5}

- 1 Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- 2 Faculty of Natural Sciences, Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK
- 3 Department of Geoecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- 4 Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Almería, Spain
- 5 Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- 6 Faculty of Biology & Botanical Garden D. Brandza, University of Bucharest, Bucharest, Romania
- 7 Department of Silviculture and Forest Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- 8 Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- 9 School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- 10 Université Libre de Bruxelles, Herbarium, Brussels, Belgium
- 11 Department of Ecology, Montana State University, Bozeman, USA
- 12 Department of Environmental Biology, Sapienza University, Rome, Italy
- 13 Herbario Nacional, Museo Nacional de Costa Rica, San José, Costa Rica
- 14 Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- 15 Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- 16 National Plant Protection Centre, Department of Agriculture, Thimphu, Bhutan
- 17 Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- 18 Herbario TEFH, Escuela de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
- 19 Ria Olivier Herbarium, Department of Botany, Nelson Mandela University, Ggeberha, South Africa
- 20 Departamento de Botánica y Herbario PMA, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá city, Panama
- 21 Plant Health Laboratory, ANSES, Montferrier-sur-Lez, France
- 22 Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- 23 La Libertad, El Salvador
- 24 Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- 25 Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- 26 Laboratory of Flora and Geobotany, State Scientific Research Institute Nature Research Centre, Vilnius, Lithuania

Copyright: © Alessandra Kortz et al.

This is an open access article distributed under terms of the Creative Commons Attribution

License (Attribution 4.0 International – CC BY 4.0)

- 27 Department of Geography, Geology and the Environment, University of Leicester, Leicester, UK
- 28 The Centre for One Biosecurity Research, Analysis and Synthesis, Department of Pest-Management and Conservation, Lincoln University, Canterbury, New Zealand
- 29 Department of Environmental Studies, Centre for Environmental Management of Degraded Ecosystems (CEMDE), University of Delhi, Delhi, India
- 30 Korea National Arboretum, Pocheon, South Korea
- 31 Department of Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
- 32 New South Wales Rural Fire Service, Sydney, Australia
- 33 Department of Community Ecology, Helmholtz Centre for Environmental Research UFZ, Halle, Germany
- 34 Smithsonian Tropical Research Institute, Panama City, Panama
- 35 Inter-American Institute for Global Change Research, Panama City, Panama
- 36 Environmental Horticulture Department, York College of Pennsylvania, York, USA
- 37 Department of Botany and Genetics, National University of Uzbekistan, Tashkent, Uzbekistan
- 38 Department of Forestry and Landscape Design, Tashkent State Agrarian University, Tashkent, Uzbekistan
- 39 Centre for Functional Ecology Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- 40 Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic University of Coimbra, Coimbra Agriculture School (ESAC), Coimbra, Portugal
- 41 Department of Botany, University of Fort Hare, Alice, South Africa
- 42 Department of Agronomic Sciences, FSBSA, Mouloud Mammeri University, Tizi Ouzou, Algeria
- 43 Botanic Garden Meise, Meise, Belgium
- 44 Université Libre de Bruxelles, Brussels, Belgium
- 45 Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
- 46 Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Australia
- 47 Department of Earth and Environment, Florida International University, Miami, USA
- 48 School of Life Sciences, University of Technology Sydney, Ultimo, Australia
- 49 Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Science, Cornell University, Ithaca, USA
- 50 Sierra Leone Agricultural Research Institute (SLARI), Freetown, Sierra Leone
- 51 Department of Forest Management, Faculty of Forestry, University of Khartoum, North Khartoum, Sudan
- 52 Vegetation Ecology, Landscape Architecture, University of Applied Sciences Weihenstephan, Freising, Germany
- 53 Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra, Spain
- 54 BABVE, Universitat Autònoma de Barcelona, Bellaterra, Spain
- 55 Asociación Jardín Botánico La laguna, Herbario LAGU, La Libertad, El Salvador
- 56 Institute of the Environment & Department of Geography, Sustainability, Community, and Urban Studies, University of Connecticut, Storrs, Connecticut, USA
- 57 Universitat de Vic Universitat Central de Catalunya, Vic, Spain
- 58 Universidad de El Salvador, Facultad Multidisciplinaria Oriental, Departamento de Ciencias Naturales y Matemática, Sección de Biología, San Miguel, El Salvador
- 59 Fundación Naturaleza, San Salvador, El Salvador
- 60 127273, Moscow, Russia
- 61 Botanical Museum, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- 62 Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
- 63 Rice Research Institute of Iran (RRII), Rasht, Iran
- 64 Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
- 65 Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- 66 Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- 67 Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Taizhou, China
- 68 Estación Biológica de Doñana, EBD-CSIC, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
- 69 Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
- 70 Department of Biological Sciences, University of Alberta, Edmonton, Canada
- 71 Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
- 72 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- 73 Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Turkiye
- 74 Novosibirsk, Russia

Corresponding author: Alessandra Kortz (alessandrakortz@gmail.com)

Academic editor:

Pedro Anastácio Received: 28 February 2025 Accepted: 8 July 2025 Published: 7 October 2025

Citation: Kortz A, Hejda M, Čuda J, Pattison Z, Brůna J, Novoa A, Pergl J, Pipek P, Štajerová K, Anastasiu P, Ansong M, Arianoutsou M, Barcelona JF, Bhatta S, Bordbar F, Borokini I, Celesti-Grapow L, Chacón-Madrigal E, Dawson W, Dorjee, Essl F, Ferrufino-Acosta L, Figueiredo E, Flores R, Fried G, Fuentes N, Galán P, Gilli C, Glaser M, Grande Allende JR, Gudžinskas Z, Holmes R, Hulme PE, Inderjit, Kang ES, Kreft H, Krix DW, Kühn I, Lopez O, MacVean A, Makhkamov T, Marchante E, Marchante H, Maroyi A, Meddour R, Meerts P, Mukul SA, Murray BR, Murray ML, Nickrent DL, Norman PE, Omer A, Patzelt A, Pelser PB, Pino J, Riera M, Rodríguez Delcid D, Rojas-Sandoval J, Rotchés-Ribalta R, Ruiz-Cruz JYS, Senator S, Sennikov AN, Shrestha BB, Smith GF, Sohrabi S, Tokarska-Guzik B, van Kleunen M, Vilà M, Wagner V, Weigelt P, Winter M, Yazlık A, Zykova E, Pyšek P (2025) A global synthesis of naturalised and invasive plants in aquatic habitats. In: Anastácio P. Ribeiro F, Chainho P (Eds) Invasions in Aquatic Systems. NeoBiota 102: 473-494. https://doi.org/10.3897/ neobiota.102.151156

Abstract

Global databases have contributed to our understanding of alien, naturalised and invasive plant species distributions. Still, the role of species invasions in habitats, specifically in aquatic habitats, remains underexplored at the global scale. Accordingly, a comprehensive global synthesis of the status of plant invasions in aquatic habitats has been missing. Here, we focus on macroecological patterns of naturalised non-invasive and invasive plants in aquatic habitats using the recently built SynHab database. Amongst all the plant records compiled in SynHab, 592 are assigned to aquatic habitats, of which 183 are unique plant taxa (further termed 'species') belonging to 49 families. Of the total number of records, 462 refer to taxa with naturalised non-invasive occurrences and 130 to invasive occurrences. The species pool analysed here refers to 78 regions distributed across all botanical continents as defined by the World Geographical Scheme for Recording Plant Distributions. The number of naturalised non-invasive aquatic species is similar across different continents and biomes, but Tropical Asia had more and the Mediterranean zonobiome had fewer invasive species than expected. Tropical Asia, Temperate Asia and Africa have the highest proportions of naturalised species that have become invasive, while across continents, invasive proportions were highest for tropical and subtropical zonobiomes. New Zealand, Italy and California contained disproportionately more naturalised species than expected, given the area covered by aquatic habitat in those regions, whereas South Sudan, Papua New Guinea and Kyrgyzstan had disproportionately fewer species. In pairwise dissimilarity comparisons, all continents had distinct species compositions (from 0.73 to 0.92 of the Jaccard dissimilarity index) and so did zonobiomes (0.69 to 1.00). The high proportion of invasive species in Tropical Asia in comparison with terrestrial invasions in this region, indicates a greater susceptibility of warmer regions to aquatic plant invasions. This may be exacerbated by further naturalisations in the future, as data from temperate regions suggest a larger pool of available species.

Key words: Macrophyte invasion, plant invasion patterns, SynHab database

Introduction

Aquatic habitats are particularly prone to invasion by alien species due to several factors, including natural disturbance regimes (e.g. river flow variation and lake water level fluctuations), high levels of connectivity and anthropogenic activities (e.g. damming for hydropower and water extraction for agriculture) (Richardson et al. 2007). High levels of connectivity, both natural and anthropogenic (such as raw water transfer schemes and canals), make monitoring and managing pathways of invasion in aquatic habitats difficult (Waine et al. 2025). Invasive aquatic plants (macrophytes) often act as autogenic engineers and primary producers (Ricciardi and MacIsaac 2010), i.e. they transform freshwater systems, change habitat structure (Valley and Bremigan 2002; Ceschin et al. 2020) and reduce water quality by altering flow and primary productivity (Perna and Burrows 2005; Gallardo et al. 2016; South et al. 2016), resulting in changes in local native diversity (Schooler et al. 2006). In addition, projected accumulations of naturalised alien plant species suggest faster increases in aquatic systems than in terrestrial habitats (Seebens et al. 2021), indicating that future impacts are likely to intensify. The severity of impacts caused by alien plants is magnified because aquatic habitats are extremely diverse relative to the area they occupy, compared to other habitats (Román-Palacios et al. 2022).

The ecological impacts of invasive alien plant species and management efforts impose substantial economic costs. From 1975 to 2040, the documented global costs of invasive macrophytes are projected to reach US\$ 32.8 billion (in 2017 dollars, Macêdo et al. 2024). However, this figure likely represents a significant underestimation due to data limitations and geographical gaps in current research

(Macêdo et al. 2024), crucially concerning the underestimated costs of invasive plants (Novoa et al. 2021). This raises additional concerns about the extent to which the economic costs of invasive plants in aquatic habitats may be reliably captured. As such, updated knowledge of regional levels of invasion is crucial for a better understanding of impacts and cost estimates.

The World's 100 worst invaders list (Lowe et al. 2000) provides examples of the harmful effects that plant invasions can have on aquatic habitats. One of the globally most prominent invaders is water hyacinth (Pontederia crassipes Mart., synonym Eichhornia crassipes (Mart.) Solms), which is native to South America and has spread to over 70 countries (Gezie et al. 2018). Pontederia crassipes is a fast-growing floating macrophyte that forms dense mats on the water surface, alters habitat structure and disrupts the ecological functioning of aquatic ecosystems (Tobias et al. 2019). This species also has direct socioeconomic impacts, including reduced navigability and recreational quality, restricted water supply for agriculture due to damaged pipe systems and reduced access to fishing grounds and boating (Kateregga and Sterner 2009; Villamagna and Murphy 2010). Similarly, Azolla filiculoides Lam., often found alongside Pontederia crassipes and Pistia stratiotes L., is a small (< 25 mm) floating macrophyte that impacts physical and chemical water features, reduces the richness and biomass of macrophytes, alters zooplankton composition and reduces the survival of amphibian larvae (Pinero-Rodríguez et al. 2021). Lagarosiphon major (Ridl.) Moss is a submerged macrophyte (Howard-Williams and Davies 1988) that forms dense underwater beds, outcompeting native macrophytes in the range it has invaded (Martin et al. 2018).

Specific inherent biological attributes (such as functional traits) determine the invasiveness of species and increase their potential to become invasive (Gioria et al. 2023) by interacting with native biota and the environment (Pyšek et al. 2020). Additionally, one of the most important factors explaining the success of plant invasions is propagule pressure (e.g. Von Holle and Simberloff 2005; Colautti et al. 2006; Cassey et al. 2018), which also applies to invasive macrophytes (Chadwell and Engelhardt 2008; Xie et al. 2013). High levels of connectivity can facilitate the spread of propagules, increasing dispersal distances for invasive plants within and between waterbodies in aquatic habitats (Richardson et al. 2007; Leuven et al. 2009). For example, natural flood events accelerate the dispersal process by facilitating the movement of propagules within catchments (Gurnell et al. 2008; Čuda et al. 2017). Climate-related changes to the flow regime further facilitate the spread of propagules by increasing the frequency of extreme floods (Pattison et al. 2017). In addition, dams create lentic habitats with slow-moving waters, which are preferred by Azolla, Pistia and Pontederia species. Given the expected increase in dam construction to mitigate climate-driven rainfall reductions, this may result in enhanced proliferation of these macrophytes. Raw water transfer schemes (water diversions) move large volumes of freshwater between catchments via complex infrastructure networks, facilitating the long-distance spread of invasive species (Waine et al. 2024a, b).

Research on plant invasions in aquatic habitats is under-represented compared to terrestrial habitats, particularly in the Tropics (Evangelista et al. 2014; Havel et al. 2015; McKnight et al. 2017), with certain species or taxonomic groups dominating the literature (Stevenson et al. 2023). Here, we utilise the newly-developed SynHab database (https://www.synhab.com/the-project), which contains information on plant naturalisations and invasions in specific habitat types worldwide (Pyšek et al. 2022; Dawson et al. 2025), to achieve a more balanced perspective of

the overall diversity of naturalised plants in aquatic habitats. We address this knowledge gap by asking the following questions: (i) Which continents and biogeographical regions (zonobiomes) have the highest levels of naturalisation and invasion of plants in aquatic habitats? (ii) Which aquatic naturalised non-invasive and invasive plants are most widely distributed? (iii) Does the vulnerability of aquatic habitats to naturalisations and invasions of plants differ in temperate vs. tropical regions? (iv) Which regions (regions or states) harbour more naturalised plant species in aquatic habitats than expected? (v) Which regions are more similar in terms of naturalised plant species composition in aquatic habitats? (vi) Which naturalised aquatic plant species are indicative of continents and zonobiomes?

Materials and methods

Habitat classification and macrophyte definition

Habitat classification, adapted from Hejda et al. (2015) for the SynHab database, resulted in 14 categories (Pyšek et al. 2022). The aquatic habitat is a category defined as "waterbodies and streams with submerged and floating plant species". Macrophytes can be defined in several ways, with some definitions including macroalgae (e.g. Chambers et al. 2008); however, here we restrict our focus to aquatic vascular plants. Species were assigned to the aquatic habitat if they exhibited growth in water as submerged or floating, including littoral species that can cope with long-term flooding, with roots anchored below the water level. Some species, such as Iris pseudacorus L., Eleocharis palustris (L.) Roem. & Schult., Juncus effusus L. and Jacobaea aquatica (Hill) G.Gaertn., B.Mey. & Scherb., can grow in the littoral zones of freshwater or brackish waterbodies, as well as in mud. In such cases, they were assigned to both aquatic and wetland habitats in SynHab, of which only the former is dealt with in the present paper. Species inhabiting mud, but intolerant to prolonged flooding, such as *Lysimachia nummularia* L. were excluded. Dimorphic species, such as Alternanthera philoxeroides (Mart.) Griseb., exhibiting mud-dwelling and littoral forms, were also affiliated with both aquatic habitats and wetlands. In such cases, species were assigned to the aquatic habitat if the habitat descriptions explicitly confirmed growth in a submerged environment of freshwater lakes, rivers, running waters, coastal basins or streams. Species that grow along rivers, but not in the water were not included. We thus included also aquatic vascular plants that are not exclusively aquatic, but that are important invaders in the aquatic habitat.

Data acquisition

The data on habitat affiliations for the SynHab database were extracted from literature sources (regional checklists of alien floras), where the verbal description of habitats allowed unequivocal assignment of a given species (see Suppl. material 1: table S1 for the complete references). If published sources lacked information on habitat affiliations, we invited the authors of original publications to collaborate and provide habitat affiliations for SynHab. The SynHab project leaders (PP, MH, AK) assessed the received information to harmonise the habitat classification with other datasets and then the final habitat affiliations were agreed upon in collaboration with data providers. In total, 78 regions (countries or states) from all continents were included (Suppl. material 1: table S1).

Each plant species was assigned the invasion status as 'naturalised' or 'invasive' in the region, following the definitions of Richardson et al. (2000) and Blackburn et al. (2011) ca; note that the species' invasion status can vary across different regions. Invasion status was assigned, based on information in the GloNAF (Global Naturalized Alien Flora) database (van Kleunen et al. 2015, 2019; Pyšek et al. 2017; Davis et al. 2025) or inferred from the description in the original source or provided by data contributors for their regions. In the context of the analyses described below, the term 'naturalised' refers to all naturalised taxa and is composed of two separate subsets: 'naturalised non-invasive' and 'invasive.'

Each taxon name, as given in the original source, was standardised according to The World Checklist of Vascular Plants (WCVP) database (https://powo.science.kew.org/about-wcvp; Govaerts et al. 2021) using the *rWCVP* package for R (Brown et al. 2023). Accepted names of the species were used in the analyses to enable species comparisons amongst regions. Four taxa were identified at the subspecies level, but were merged with the corresponding species level for analyses.

Habitat area

To quantify the area of aquatic habitats within each region, gridded global land-cover data, with a spatial resolution of 300 m, were acquired from Defourny et al. (2023). These data comprised 37 land-cover classes, conforming to the United Nations Land Cover Classification System (UN-LCCS) (Di Gregorio and Jansen 2005). We converted the year 2019 raster to a shapefile and intersected it with SynHab regions for further analysis. We excluded permanent snow and ice classes, which resulted in 35 classes included in the analyses. Water surface area of classes was summed for use in analyses.

Biogeographical variables: continents and zonobiomes

Each of the 78 regions for which data on naturalised plant species in aquatic habitats were available was assigned to a continent and a state or country (levels 1 and 4, respectively, of the TDWG World Geographic Scheme for Recording Plant Distributions; Brummitt 2001): Northern America (data available for n = 13 regions); Southern America, n = 11; Africa, n = 16; Europe, n = 16; Temperate Asia, n = 9; Tropical Asia, n = 11; and Australasia, n = 2. Only one record was sampled in the Pacific, which was not considered in the analyses. Further, regions were assigned to one of the following zonobiomes: I. Tropical (equatorial), n = 18 regions; II. Tropical (savannah), n = 15; III. Subtropical (arid), n = 7; IV. Mediterranean, n = 8; VI. Temperate (nemoral), n = 17 regions; VII. Arid temperate (continental), n = 4; VIII. Cold temperate (boreal), n = 1; and n = 8 regions were assigned as "multiple" zonobiomes (Chile, China, Flores, Faial and Santa Maria, Azores, Florida, New South Wales, Russia Kostroma, Russia Middle Volga and Russia Novosibirsk based on Walter and Breckle (1991). While some regions, categorised as 'multiple', may encompass the V. Warm Temperate Zonobiome, no regions were exclusively assigned to it.

Statistical analyses

To test whether naturalisation and invasion in aquatic habitats differ amongst continents and zonobiomes, we used generalised linear models (GLM) with Poisson distribution. Using standardized residuals from generalised linear

models (GLMs), we determined if observed species richness was significantly higher or lower than expected across zonobiomes and continents. Statistical significance was assessed by comparing these residuals to critical values corresponding to P < 0.05 (\pm 1.96), P < 0.01 (\pm 2.58) and P < 0.001 (\pm 3.29). Positive values indicate higher and negative values indicate lower naturalised species richness than expected by chance.

The species-area relationship was calculated by fitting a linear model to the number of all naturalised species recorded and the area of aquatic habitat in each region on a log-log scale. To compare the dissimilarity of the regions in terms of their naturalised species composition in aquatic habitats, we calculated the Jaccard dissimilarity index using the "betapart" package (Baselga and Orme 2012; Baselga et al. 2023). To identify which species were significant indicators of each continent and zonobiome, we used the "multipatt" function of the indicator value analysis (IndVal) in the R package "indicspecies" (Dufrêne and Legendre 1997; De Cáceres and Legendre 2009), calculated considering groups of regions within each continent or zonobiome. Complementary to the species composition analysis, the indicator value analysis determines groups of indicator species by measuring their association with each group (continent or zonobiome) or combination of groups and it does not explicitly consider climate, local environment or introduction history.

All statistical analyses were performed in R version 4.4.1 (R Core Team 2024).

Results

Naturalised and invasive species numbers

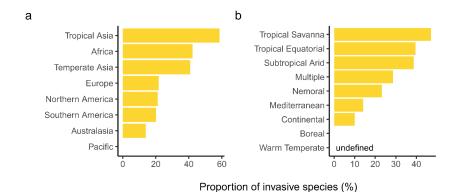
Of the 585 records in aquatic habitats, 458 referred to naturalised, non-invasive occurrences and 127 to invasive occurrences. The same species can be naturalised, non-invasive in one region and invasive in another; thus, the focus was on the number of occurrences rather than the number of species. In total, we recorded 183 naturalised plant taxa (further referred to as 'species' for simplicity) belonging to 46 families and 88 genera; of these 183, there were 52 classified as invasive in at least one region. The 10 families with the largest number of species were Hydrocharitaceae, Plantaginaceae, Cyperaceae, Poaceae, Araceae, Alismataceae, Onagraceae, Nymphaeaceae, Pontederiaceae and Salviniaceae.

Naturalised aquatic species occurred in 78 regions on all continents (Suppl. material 1: table S1). Of the sampled regions, 34 (i.e. 43.6%) contained information on invasive species. New Zealand had the largest number of naturalised species (n = 37), followed by California and Italy (n = 29 each), France (n = 27), Florida (n = 23), Chile and Virginia (n = 20). Species recorded as naturalised in at least one region were native to Temperate Asia (n = 94), Northern America (n = 87), Tropical Asia (n = 81), Africa (n = 79), Southern America (n = 77), Europe (n = 58), Australasia (n = 45) and the Pacific (n = 21). The most widespread invader, occurring in 55.7% of the sampled regions (n = 43), was *Pontederia crassipes* (this species was considered invasive in 15 of the 43 regions), followed by *Pistia stratiotes* and *Elodea canadensis* Michx., *Azolla filiculoides, Elodea densa* (Planch.) Casp. and *Myriophyllum aquaticum* (Vell.) Verdc., all occurring in at least 25% of the sampled regions (Table 1). In contrast, 105 species (56.6% of all sampled species) were found in only one region.

Table 1. The top 21 aquatic species recorded in the largest number of SynHab regions presented by invasion status. These represent 11.3% of species recorded and 50.3% of all records. Am-S = Southern America, Am-N = Northern America, EU = Europe, AUS = Australasia, AS-temp = Temperate Asia, AS-trop = Tropical Asia, AF = Africa; I = number of records as invasive, N = number of records as naturalised non-invasive.

Species	I	N	Total	Continent of origin Am-S	
Pontederia crassipes	15	28	43		
Pistia stratiotes	7	16	23	AF, Am-N, Am-S	
Elodea canadensis	7	15	22	Am-N	
Azolla filiculoides	7	14	21	Am-N, Am-S, Antarctica	
Elodea densa	5	15	20	Am-S	
Myriophyllum aquaticum	6	14	20	Am-S	
Nasturtium officinale	2	17	19	AF, AS-temp, AS-trop, EU	
Salvinia molesta	10	7	17	Am-S	
Hydrilla verticillata	5	11	16	EU, AF, AS-temp, AS-trop, AUS	
Alternanthera philoxeroides	6	7	13	Am-S	
Potamogeton crispus	1	9	10	EU, AF, AS-temp, AS-trop, AUS	
Myriophyllum spicatum	3	7	10	EU, AF, AS-temp, AS-trop, Am-N	
Pontederia vaginalis	1	8	9	AS-temp, AS-trop, AUS	
Elodea nuttallii	2	6	8	Am-N	
Lemna minuta	2	7	9	Am-N, Am-S	
Veronica anagallis-aquatica		8	8	AF, AS-temp, AS-trop, EU	
Nymphoides peltata	1	6	7	AF, AS-temp, AS-trop, EU	
Acorus calamus		7	7	AS-temp, AS-trop, Am-N	
Typha angustifolia	1	5	6	EU, AF, AS-temp, AS-trop, Am-N	
Nelumbo nucifera		6	6	EU, AS-temp, AS-trop, AUS	
Sagittaria latifolia		6	6	Am-N, Am-S	

Biogeographical patterns


The numbers of naturalised aquatic species (considering naturalised non-invasive and invasive species together) per continent and zonobiome were not significantly different from the values expected by chance. However, a different pattern was evident for invasive species. Aquatic habitats in Tropical Asia harboured more invasive species than expected; the opposite was found for the Mediterranean zonobiome, where invasive aquatic species were under-represented (Table 2). Using the proportion of naturalised species that have become invasive as a measure, Tropical Asia, Africa and Tropical Asia ranked the highest amongst continents, with 58.6%, 42.3% and 40.7%, respectively (Fig. 1). Tropical zonobiomes, both Savannah (44.4%) and Equatorial (43.5%) and the Subtropical Arid zonobiome (38.7%) had the greatest proportions of naturalised species recorded as invasive (Fig. 1). No species were sampled in the Warm Temperate zonobiome.

A continental-scale comparison of naturalised species richness in aquatic versus terrestrial habitats, using a combined dataset of all naturalised species, demonstrated that in Africa and Temperate Asia, the observed proportion of aquatic naturalised species was significantly lower than expected by chance (Table 3). For zonobiomes, the aquatic habitats in the Mediterranean harboured disproportionally more and Warm Temperate fewer (none) naturalised species than terrestrial habitats in this region (Table 3, Fig. 2).

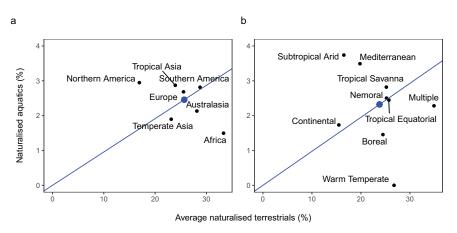

For invasive species, the number of aquatic compared to terrestrial was higher than expected by chance in Tropical Asia and Northern America and lower in Temperate Asia (Table 3). Regarding zonobiomes, the representation

Table 2. Number of naturalised non-invasive and invasive aquatic species in continents and zonobiomes. Light orange cells indicate more and blue fewer alien species than expected by chance based on the generalised linear models. Significance indicated by asterisks (* P < 0.05).

Continent	Naturalised non-invasive	Invasive	
Africa	20	11	
Temperate Asia	18	11	
Tropical Asia	21	17*	
Australasia	39	6	
Europe	67	14	
Northern America	61	15	
Southern America	45	10	
Zonobiome			
Boreal	3	0	
Continental	8	1	
Mediterranean	69	10*	
Multiple	50	18	
Nemoral	79	19	
Subtropical Arid	22	12	
Tropical Equatorial	33	17	
Tropical Savannah	27	16	
Warm Temperate	0	0	

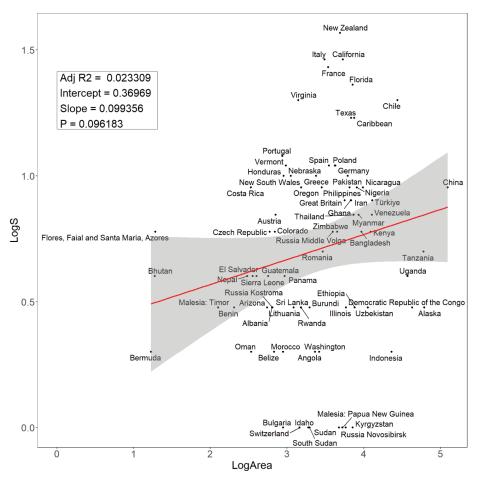
Figure 1. Proportion of invasive species amongst naturalised species in continents (a) and in zono-biomes (b).

Figure 2. Naturalisation in aquatic habitat compared to terrestrial habitats (mean for all other habitats) by continent (**a**) and zonobiome (**b**). The blue line shows the theoretical linear increase in mean naturalisation in both aquatic habitat and terrestrial habitats, connecting zero and mean naturalisation in each habitat (marked by a blue point).

Table 3. Number of naturalised and invasive species in different habitat types (aquatic, terrestrial) by continents and zonobiomes. Significance is indicated by asterisks (** P < 0.001, * P < 0.05) and direction by colours: light orange cells show more and blue fewer species than expected by chance, based on the generalised linear models.

Continent	Naturalised aquatic	Naturalised terrestrial	Invasive aquatic	Invasive terrestrial
Africa	20**	1,729	11	319
Temperate Asia	18*	1,420	11*	468
Tropical Asia	21	1,008	17*	208
Australasia	39	2,000	6	183
Europe	67	2,548	14	319
Northern America	64	2,384	15*	196
Southern America	45	1,774	10	313
Zonobiome				
Boreal	3	204	0	5
Continental	9	571	1	98
Mediterranean	70**	2,017	10	231
Multiple	50	2,748	18	520
Nemoral	79	3,243	19	342
Subtropical Arid	22	819	12	146
Tropical Equatorial	33	1,747	17	482
Tropical Savannah	27	1,202	16	217
Warm Temperate	0*	139	0**	90

of invasive species in aquatic compared to terrestrial habitats was lower than expected in Warm Temperate areas, where no invasive aquatic species were recorded in our dataset (Table 3).

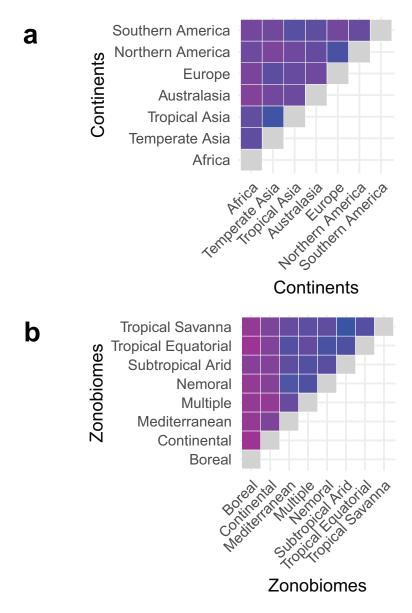

Species-area relationships

The species-area relationship highlights that specific regions contain disproportionately more naturalised species than would be expected, based on the area of aquatic habitat in each region. This was most pronounced in New Zealand, Italy, and California. Other regions that fall below this expectation include South Sudan, Papua New Guinea and Kyrgyzstan (Fig. 3).

Species composition

Overall, species composition differed across continents and zonobiomes. All pairs of continents exhibited a high dissimilarity, as revealed by the Jaccard dissimilarity index ranging from 0.73 to 0.92 (Fig. 4a). Tropical Asia and Temperate Asia had the lowest mutual dissimilarity (0.73), followed by Europe and Northern America (0.78), Tropical Asia and Southern America (0.80) and Temperate Asia and Europe (0.81). The most distinct pair of continents was Africa and Australasia (0.92).

In relation to zonobiomes, the dissimilarity ranged from 0.68 to 1.00. The lowest dissimilarity was found between Mediterranean and Nemoral (0.68), followed by Subtropical Arid and Tropical Savannah (0.75) and Nemoral and Tropical Equatorial (0.77). Boreal and Continental, as well as Boreal and Tropical Equatorial zonobiomes differed most from other zonobiomes in their species composition (Fig. 4b).


Figure 3. Species-area relationships of aquatic habitats. LogS represents the decadic logarithm of the number of species sampled, while LogArea represents the decadic logarithm of the aquatic habitat area (in km²) for each region. Grey area denotes 95% confidence interval and the red line represents the regression line.

Indicator species

The most widespread invaders (Table 1, Fig. 5) occurred in at least 25% of the sampled regions. Indicator species analysis identified indicative species of some continents and zonobiomes, as well as certain widespread species that are typical of a combination of two or more continents and zonobiomes. Australasia had the largest number of indicator species (n = 30), while *Ludwigia palustris* (L.) Elliott and *Lagarosiphon major* had the highest significance values. In Europe, *Lemna minuta* Kunth and *Elodea nuttallii* (Planch.) H.St.John were selected as indicator species and, in Northern America, they were *Myriophyllum spicatum* L., *Veronica anagallis-aquatica* L. and *Ty-pha angustifolia* L. (Suppl. material 1: table S2). A single species, *Juncus effusus*, was selected as an indicator of the Boreal zonobiome (Suppl. material 1: table S3). *Elodea canadensis* was selected for the groups of two or more zonobiomes: Mediterranean, Nemoral and for the "Multiple" category, whereas the most widespread species, *Pontederia crassipes*, was indicative of all zonobiomes, except Boreal and Nemoral.

Discussion

Our research sheds light on global patterns of naturalised and invasive plants in aquatic habitats. A considerable number of naturalised non-invasive and invasive species were recorded in tropical regions, raising a concern highlighted

Figure 4. Jaccard dissimilarity of naturalised aquatic species composition. Grey shades represent higher similarity (= lower dissimilarity) amongst sites and purple shows the lowest similarity (= complete dissimilarity) amongst continents (a) and zonobiomes (b).

by the higher proportion of invasive species within naturalised flora in tropical zonobiomes (Fig. 1). Furthermore, aquatic habitats harbour more invasive species than expected, particularly in Tropical Asia (Table 3), which is consistent with previous findings linking higher numbers of introduced macrophyte species to an increase in both higher annual temperature and higher longitude (Murphy et al. 2019; Lobato-de Magalhães et al. 2023). Moreover, the high number of alien aquatic plants in Tropical Asia is likely a result of a combination of suitable environmental conditions: warm climate, high nutrients and numerous intentional and accidental introductions, combined with a large human influence and deforestation in the area (Wu and Ding 2019).

However, data on global aquatic naturalised flora in the SynHab database remains incomplete. SynHab was not designed exclusively for aquatic habitats and data available in the database do not allow us to distinguish the role of specific

Figure 5. Invasion by *Pontederia crassipes* in Hawaii (**a**) and in the canal in Bayou Chevreuil, Louisiana, USA (**b**); *Pistia stratiotes* in its native range, Argentina (**c**) and in Panama (**d**). Photos by MH and JČ.

finer habitats, such as lakes, rivers and ponds. The aim of SynHab was to collect data on the distribution of naturalised species in habitats worldwide, enabling comparisons amongst them. Therefore, only regions for which there was comprehensive information on affiliations to all habitat types were considered. Thus, data is lacking from many regions of the world. Still, our dataset provides a reasonably thorough account of what is known about naturalised alien species globally, despite the relatively low research effort in aquatic compared to terrestrial habitats (Evangelista et al. 2014; Havel et al. 2015; McKnight et al. 2017). According to the most comprehensive assessment of the world's naturalised flora (Pyšek et al. 2017), aquatic species comprised only 0.9% of the total species reported. The first edition of the GloNAF database (van Kleunen et al. 2019) included 147 taxa, whereas our updated dataset has 183 taxa.

Our SynHab-based analysis reveals that the highest numbers of naturalised aquatic species were recorded in New Zealand, Italy, California and France, i.e. regions with high Gross Domestic Product (GDP), a warm climate and a long history of plant introductions. Research on biological invasions in New Zealand is extensive and a remarkable number of introduced macrophyte species have been previously reported (Lobato-de Magalháes et al. 2023). Hussner (2012) suggested that Italy and France have the highest number of alien aquatic plant species in Europe (34 species each). These two countries are known gateways for alien aquatic species introductions in Europe, especially through aquaculture (Nunes et al. 2014). In addition, France and Italy practise extensive rice cultivation (in the Camargue and the Po Valley, respectively) and species introduced into rice fields can subsequently colonise other aquatic habitats. According to Hussner et al. (2010), the number of alien aquatic plant species has increased rapidly in recent decades, doubling in Germany from 12 to 24 between 1980 and 2009. This has been attributed to an increase in the

movement of ship ballast water and the continued popularity of the aquarium trade over the last 50 years, whilst improved monitoring and reporting may also contribute to this observed increase.

The global pattern of aquatic macrophyte distribution suggests that most species have a limited range across the world's ecozones (Murphy et al. 2019, 2020; Lobato-de Magalhães et al. 2023). Our study also reveals, despite the data limitations in SynHab, that naturalised species tend to be region-specific, exhibiting high dissimilarity between continents and zonobiomes (Fig. 4). More specifically, we identified distinct species indicative of specific continents and zonobiomes (Suppl. material 1: tables S2, S3). Some indicator species occur in similar environments that match those in their native range, such as Juncus effusus, invading in the boreal zonobiome and native to temperate regions. However, a subset of ~ 1.2% of the total macrophyte species have broad ranges (Murphy et al. 2019). For instance, Pontederia crassipes was sampled in 36.8% of the world's 238 grid cells 10 × 10° (latitude × longitude) in size covering the aquatic habitat area (Lobato-de Magalhães et al. 2023). Our results show that certain species serve as indicators for invaded regions that are climatically different from their native ranges, which is expected, as aquatic species may be less limited by climatic conditions than terrestrial species. Pontederia crassipes, the most widespread species in our dataset, is native to southern tropical America and primarily grows in the wet tropical biome. However, P. crassipes has been assigned as indicative not only of Tropical Equatorial and Tropical Savannah, as expected, but also of Continental, Mediterranean, Multiple and Subtropical Arid zonobiomes. Pistia stratiotes, native to the Tropics and Subtropics and primarily also growing in the wet tropical biome, is an indicator of Tropical Savannah and has expanded into Subtropical Arid and Continental zonobiomes. Elodea canadensis, native to southern Canada and the United States, mostly in the Temperate zonobiome, is indicative of Nemoral and Mediterranean, and zonobiomes classified as Multiple.

Invasive alien macrophytes are considered more successful than native macrophytes due to the absence of natural enemies or competitors, higher tolerance to eutrophication and altered hydrology (Coetzee and Hill 2012). Moreover, higher temperatures are expected to increase the invasibility of temperate habitats by tropical macrophytes (Adebayo et al. 2011). An increase in temperature, CO₂ and nutrients can potentially benefit emergent and floating macrophytes (Lind et al. 2022). Indeed, *P. crassipes* and *P. stratiotes* (both floating macrophytes) are more widely distributed than other species and disperse easily. The distribution patterns of these species, as revealed in our study, suggest variation in the plasticity of their invasiveness. Lind et al. (2022) suggested that submerged macrophytes may be negatively affected by climate change and other anthropogenic pressures. However, in our study, the submerged macrophyte *E. canadensis* was reported across multiple zonobiomes, suggesting we should not underestimate the capacity of submerged macrophytes to respond positively to global change.

Projected climate change impacts pose future challenges, notably the emergence of invasion hotspots, particularly in the United States, north-eastern Europe, southwest Australia and New Zealand (Bellard et al. 2013; Gillard et al. 2017). Conversely, Indonesia, Pacific islands, central Africa and southern Brazil are predicted to be less affected (Bellard et al. 2013). This projected pattern suggests a greater increase in invasive species in the Northern Hemisphere compared to the Southern Hemisphere, with tropical regions potentially exhibiting lower

invasibility (Bellard et al. 2013). While Bellard et al. (2013) focused on a limited number of aquatic species, more recent work modelling future invasive macrophyte distributions has indicated suitable habitat expansion in Europe and North America (Gillard et al. 2017), specifically for three aquatic plant taxa (*Elodea densa*, *Myriophyllum aquaticum* and *Ludwigia* spp.). Our results highlight the presence of invasive species in tropical aquatic habitats. Further efforts to document naturalised species, especially in tropical regions, are essential to disentangle the risk of invasion in the Tropics by alien species.

Acknowledgements

We thank Artem Leostrin for providing data. We would also like to thank Nigel J. Willby for advice and support regarding macrophyte life history strategies and Zuzana Sixtová for technical assistance.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Use of Al

No use of AI was reported.

Funding

Authors from the Institute of Botany, Czech Academy of Sciences, were supported by EXPRO grant no. 19-28807X (Czech Science Foundation) and long-term research development project RVO 67985939 (Czech Academy of Sciences). AN was supported by the MCIN/AEI/10.13039/501100011033 and the FSE+ (grant no. RYC2022-037905-I). FE and BL appreciate funding from Austrian Science Fund FWF (Global Plant Invasions, grant no. I 5825-B). MG appreciates funding by the Austrian Science Fund FWF (MOTIVATE, pr.no. I 6846-B). NF acknowledges funding from Proyecto Nueva Flora de Chile (grant no. 2023000111HER).

Author contributions

Conceptualization: PPy, AK, MH, JČ. Data curation: MH, AK, PPy, JČ, ZP, AN, JP, PPi, KŠ. Formal analysis: AK, JB, JČ, MH. Funding acquisition: PPy. Investigation: All authors. Project administration: PPy. Validation: JČ, ZP, MH, PPy. Visualization: AK, JČ. Writing - original draft: AK, JČ, MH, PPy, ZP. Writing - review and editing: All authors.

Author ORCIDs

Alessandra Kortz https://orcid.org/0000-0002-7473-1987

Martin Hejda https://orcid.org/0000-0002-7317-7056

Jan Čuda https://orcid.org/0000-0002-2370-2051

Zarah Pattison https://orcid.org/0000-0002-5243-0876)

Josef Brůna https://orcid.org/0000-0002-4839-4593

Ana Novoa https://orcid.org/0000-0001-7092-3917

Jan Pergl https://orcid.org/0000-0002-0045-1974

```
Pavel Pipek https://orcid.org/0000-0003-1116-1013
Kateřina Štajerová https://orcid.org/0000-0001-7824-1793
Paulina Anastasiu https://orcid.org/0000-0001-6355-2126
Michael Ansong https://orcid.org/0000-0003-3811-3230
Margarita Arianoutsou https://orcid.org/0000-0002-6743-9240
Julie F. Barcelona https://orcid.org/0000-0001-5087-8637
Suneeta Bhatta  https://orcid.org/0000-0002-2993-7193
Farzaneh Bordbar https://orcid.org/0000-0002-3042-8329
Israel Borokini https://orcid.org/0000-0002-1258-7932
Laura Celesti-Grapow https://orcid.org/0000-0002-9533-6919
Eduardo Chacón-Madrigal Dhttps://orcid.org/0000-0002-8328-5456
Wayne Dawson bhttps://orcid.org/0000-0003-3402-0774
Dorjee https://orcid.org/0000-0001-6866-9278
Franz Essl https://orcid.org/0000-0001-8253-2112
Lilian Ferrufino-Acosta https://orcid.org/0000-0002-2065-9174
Estrela Figueiredo https://orcid.org/0000-0002-8511-8213
Rodolfo Flores https://orcid.org/0000-0002-7911-9228
Guillaume Fried https://orcid.org/0000-0002-3653-195X
Nicol Fuentes https://orcid.org/0000-0002-3773-9832
Pablo Galán https://orcid.org/0000-0002-7037-7853
Christian Gilli https://orcid.org/0000-0002-6679-4654
Michael Glaser  https://orcid.org/0000-0002-4695-6150
José Ramón Grande Allende https://orcid.org/0000-0002-7066-0608
Zigmantas Gudžinskas https://orcid.org/0000-0001-6230-5924
Rachael Holmes https://orcid.org/0000-0002-6045-8705
Philip E. Hulme https://orcid.org/0000-0001-5712-0474
Inderjit https://orcid.org/0000-0002-4142-1392
Eun Su Kang https://orcid.org/0000-0003-3499-0869
Holger Kreft https://orcid.org/0000-0003-4471-8236
Dan W. Krix https://orcid.org/0000-0002-0733-1254
Ingolf Kühn https://orcid.org/0000-0003-1691-8249
Omar Lopez https://orcid.org/0000-0003-4953-2123
AnaLu MacVean https://orcid.org/0000-0001-7256-8453
Trobjon Makhkamov https://orcid.org/0000-0003-2667-7960
Elizabete Marchante https://orcid.org/0000-0003-1303-7489
Hélia Marchante https://orcid.org/0000-0002-3247-5663
Alfred Maroyi https://orcid.org/0000-0001-7965-3415
Rachid Meddour https://orcid.org/0000-0003-2936-2470
Pierre Meerts https://orcid.org/0000-0003-4215-027X
Sharif A. Mukul https://orcid.org/0000-0001-6955-2469
Brad R. Murray https://orcid.org/0000-0002-4734-5976
Megan L. Murray https://orcid.org/0000-0002-0417-4337
Daniel L. Nickrent https://orcid.org/0000-0001-8519-0517
Prince E. Norman https://orcid.org/0000-0002-0150-8610
Ali Omer  https://orcid.org/0000-0001-5687-3386
Annette Patzelt https://orcid.org/0000-0003-3510-4582
Pieter B. Pelser https://orcid.org/0000-0002-6990-1419
Joan Pino https://orcid.org/0000-0003-0939-7502
Marc Riera https://orcid.org/0000-0002-3860-6046
```

Dagoberto Rodríguez Delcid https://orcid.org/0000-0002-0688-4615 Julissa Rojas-Sandoval https://orcid.org/0000-0001-6620-4741 Roser Rotchés-Ribalta https://orcid.org/0000-0003-4311-5863 José Yader Sageth Ruiz-Cruz https://orcid.org/0000-0003-4252-0488 Stepan Senator https://orcid.org/0000-0003-1932-2475 Alexander N. Sennikov https://orcid.org/0000-0001-6664-7657 Bharat Babu Shrestha https://orcid.org/0000-0002-9457-2637 Gideon F. Smith https://orcid.org/0000-0002-5417-9208 Sima Sohrabi https://orcid.org/0000-0002-0775-8362 Barbara Tokarska-Guzik https://orcid.org/0000-0002-4058-1220 Mark van Kleunen https://orcid.org/0000-0002-2861-3701 Montserrat Vilà https://orcid.org/0000-0003-3171-8261 Viktoria Wagner https://orcid.org/0000-0002-2665-9888 Patrick Weigelt https://orcid.org/0000-0002-2485-3708 Marten Winter https://orcid.org/0000-0002-9593-7300 Ayşe Yazlık https://orcid.org/0000-0001-7059-0761 Elena Zykova https://orcid.org/0000-0002-1847-5835 Petr Pyšek https://orcid.org/0000-0001-8500-442X

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

- Adebayo A, Briski E, Kalaci O, Hernandez M, Ghabooli S, Beric B, Chan F, Zhan A, Fifield E, Leadley T, MacIsaac H (2011) Water hyacinth (*Eichhornia crassipes*) and water lettuce (*Pistia stratiotes*) in the Great Lakes: Playing with fire? Aquatic Invasions 6: 91–96. https://doi.org/10.3391/ai.2011.6.1.11
- Baselga A, Orme CDL (2012) betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x
- Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, Martinez-Santalla S, Martin-Devasa R, Gomez-Rodriguez C, Crujeiras RM, Henriques-Silva R (2023) betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.6. https://CRAN.R-project.org/package=betapart
- Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Global Change Biology 19: 3740–3748. https://doi.org/10.1111/gcb.12344
- Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26: 333–339. https://doi.org/10.1016/j.tree.2011.03.023
- Brown MJM, Walker BE, Black N, Govaerts RHA, Ondo I, Turner R, Nic Lughadha E (2023) rW-CVP: A companion R package for the World Checklist of Vascular Plants. The New Phytologist 240: 1355–1365. https://doi.org/10.1111/nph.18919
- Brummitt RK (2001) World geographic scheme for recording plant distributions. 2nd edn. Hunt Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh, 1–137. http://rs.tdwg.org/wgsrpd/doc/data/
- Cassey P, Delean S, Lockwood JL, Sadowski JS, Blackburn TM (2018) Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLOS Biology 16: e2005987. https://doi.org/10.1371/journal.pbio.2005987

- Ceschin S, Ferrante G, Mariani F, Traversetti L, Ellwood NTW (2020) Habitat change and alteration of plant and invertebrate communities in waterbodies dominated by the invasive alien macrophyte *Lemna minuta* Kunth. Biological Invasions 22: 1325–1337. https://doi.org/10.1007/s10530-019-02185-5
- Chadwell TB, Engelhardt KAM (2008) Effects of pre-existing submersed vegetation and propagule pressure on the invasion success of *Hydrilla verticillata*. Journal of Applied Ecology 45: 515–523. https://doi.org/10.1111/j.1365-2664.2007.01384.x
- Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26. https://doi.org/10.1007/s10750-007-9154-6
- Coetzee JA, Hill MP (2012) The role of eutrophication in the biological control of water hyacinth, *Eichhornia crassipes*, in South Africa. BioControl 57: 247–261. https://doi.org/10.1007/s10526-011-9426-y
- Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule Pressure: A Null Model for Biological Invasions. Biological Invasions 8: 1023–1037. https://doi.org/10.1007/s10530-005-3735-y
- Čuda J, Rumlerová Z, Brůna J, Skálová H, Pyšek P (2017) Floods affect the abundance of invasive *Impatiens glandulifera* and its spread from river corridors. Diversity & Distributions 23: 342–354. https://doi.org/10.1111/ddi.12524
- Davis AJS, Dawson W, Essl F, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, van Kleunen M (2025) The updated Global Naturalized Alien Flora (GloNAF 2.0) database. Ecology. [in review]
- Dawson W, Blumenthal D, Čuda J, Duncan R, Frohlich D, Hejda M, Liu Y, Novoa A, Oduor A, Pergl J, Pipek P, Pivello VR, Pyšek P, Richardson DM, SynHab Contributors, Kortz A (2025) Invasive species in grasslands. In: Hager HA, Gibson DJ, Newman JA (Eds) Routledge handbook of grasslands. Routledge, New York. [in press]
- De Cáceres M, Legendre P (2009) Associations between species and groups of sites: Indices and statistical inference. Ecology 90: 3566–3574. https://doi.org/10.1890/08-1823.1
- Defourny P, Lamarche C, Brockmann C, Boettcher M, Bontemps S, De Maet T, Duveiller GL, Harper K, Hartley A, Kirches G, Moreau I, Peylin P, Ottlé C, Radoux J, Van Bogaert E, Ramoino F, Albergel C, Arino O (2023) Observed annual global land-use change from 1992 to 2020 three times more dynamic than reported by inventory-based statistics. https://maps.elie.ucl.ac.be/CCI/viewer/download.php [2025-01-13]
- Di Gregorio A, Jansen LJM (2005) Land Cover Classification System (LCCS): Classification concepts and user manual. Software version 2. Food and Agriculture Organization of the United Nations, Rome, 1–208. https://www.fao.org/3/x0596e/x0596e00.htm
- Dufrêne M, Legendre P (1997) Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366. https://doi.org/10.1890/0012-96 15(1997)067[0345:SAAIST]2.0.CO;2
- Evangelista H, Thomaz S, Umetsu C (2014) An analysis of publications on invasive macrophytes in aquatic ecosystems. Aquatic Invasions 9: 521–528. https://doi.org/10.3391/ai.2014.9.4.10
- Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 22: 151–163. https://doi.org/10.1111/gcb.13004
- Gezie A, Assefa WW, Getnet B, Anteneh W, Dejen E, Mereta ST (2018) Potential impacts of water hyacinth invasion and management on water quality and human health in Lake Tana watershed, Northwest Ethiopia. Biological Invasions 20: 2517–2534. https://doi.org/10.1007/s10530-018-1717-0
- Gillard M, Thiébaut G, Deleu C, Leroy B (2017) Present and future distribution of three aquatic plants taxa across the world: Decrease in native and increase in invasive ranges. Biological Invasions 19: 2159–2170. https://doi.org/10.1007/s10530-017-1428-y
- Gioria M, Hulme PE, Richardson DM, Pyšek P (2023) Why are invasive plants successful? Annual Review of Plant Biology 74: 635–670. https://doi.org/10.1146/annurev-arplant-070522-071021

- Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A (2021) The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8: 215. https://doi.org/10.1038/s41597-021-00997-6
- Gurnell A, Thompson K, Goodson J, Moggridge H (2008) Propagule deposition along river margins: Linking hydrology and ecology. Journal of Ecology 96: 553–565. https://doi.org/10.1111/j.1365-2745.2008.01358.x
- Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB (2015) Aquatic invasive species: Challenges for the future. Hydrobiologia 750: 147–170. https://doi.org/10.1007/s10750-014-2166-0
- Hejda M, Chytrý M, Pergl J, Pyšek P (2015) Native-range habitats of invasive plants: Are they similar to invaded-range habitats and do they differ according to the geographical direction of invasion? Diversity & Distributions 21: 312–321. https://doi.org/10.1111/ddi.12269
- Howard-Williams C, Davies J (1988) The invasion of Lake Taupo by the submerged waterweed *Laga-rosiphon major* and its impact on the native flora. New Zealand Journal of Ecology 11: 13–19.
- Hussner A (2012) Alien aquatic plant species in European countries. Weed Research 52: 297–306. https://doi.org/10.1111/j.1365-3180.2012.00926.x
- Hussner A, Van de Weyer K, Gross EM, Hilt S (2010) Comments on increasing number and abundance of non-indigenous aquatic macrophyte species in Germany. Weed Research 50: 519–526. https://doi.org/10.1111/j.1365-3180.2010.00812.x
- Kateregga E, Sterner T (2009) Lake Victoria fish stocks and the effects of water hyacinth. Journal of Environment & Development 18: 62–78. https://doi.org/10.1177/1070496508329467
- Leuven RSEW, van der Velde G, Baijens I, Snijders J, van der Zwart C, Lenders HJR, bij de Vaate A (2009) The river Rhine: A global highway for dispersal of aquatic invasive species. Biological Invasions 11: 1989. https://doi.org/10.1007/s10530-009-9491-7
- Lind L, Eckstein RL, Relyea RA (2022) Direct and indirect effects of climate change on distribution and community composition of macrophytes in lentic systems. Biological Reviews of the Cambridge Philosophical Society 97: 1677–1690. https://doi.org/10.1111/brv.12858
- Lobato-de Magalháes T, Murphy K, Efremov A, Davidson TA, Molina-Navarro E, Wood KA, Tapia-Grimaldo J, Hofstra D, Fu H, Ortegón-Aznar I (2023) How on Earth did that get there? Natural and human vectors of aquatic macrophyte global distribution. Hydrobiologia 850: 1515–1542. https://doi.org/10.1007/s10750-022-05107-0
- Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World's Worst Invasive Alien Species: A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN).
- Macêdo RL, Haubrock PJ, Klippel G, Fernandez RD, Leroy B, Angulo E, Carneiro L, Musseau CL, Rocha O, Cuthbert RN (2024) The economic costs of invasive aquatic plants: A global perspective on ecology and management gaps. The Science of the Total Environment 908: 168217. https://doi.org/10.1016/j.scitotenv.2023.168217
- Martin GD, Coetzee JA, Compton S (2018) Plant–herbivore–parasitoid interactions in an experimental freshwater tritrophic system: Higher trophic levels modify competitive interactions between invasive macrophytes. Hydrobiologia 817: 307–318. https://doi.org/10.1007/s10750-017-3417-7
- McKnight E, García-Berthou E, Srean P, Rius M (2017) Global meta-analysis of native and nonin-digenous trophic traits in aquatic ecosystems. Global Change Biology 23: 1861–1870. https://doi.org/10.1111/gcb.13524
- Murphy K, Efremov A, Davidson TA, Molina-Navarro E, Fidanza K, Crivelari Betiol TC, Chambers P, Tapia Grimaldo J, Varandas Martins S, Springuel I, Kennedy M, Mormul RP, Dibble E, Hofstra D, Lukács BA, Gebler D, Baastrup-Spohr L, Urrutia-Estrada J (2019) World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158: 103127. https://doi.org/10.1016/j.aquabot.2019.06.006

- Murphy K, Carvalho P, Efremov A, Tapia Grimaldo J, Molina-Navarro E, Davidson TA, Thomaz SM (2020) Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biology 65: 1622–1640. https://doi.org/10.1111/fwb.13528
- Novoa A, Moodley D, Catford JA, Golivets M, Bufford J, Essl F, Lenzner B, Pattison Z, Pyšek P (2021) Global costs of plant invasions must not be underestimated. NeoBiota 69: 75–78. https://doi.org/10.3897/neobiota.69.74121
- Nunes AL, Katsanevakis S, Zenetos A, Cardoso AC (2014) Gateways to alien invasions in the European seas. Aquatic Invasions 9: 133–144. https://doi.org/10.3391/ai.2014.9.2.02
- Pattison Z, Minderman J, Boon PJ, Willby N (2017) Twenty years of change in riverside vegetation: What role have invasive alien plants played? Applied Vegetation Science 20: 422–434. https://doi.org/10.1111/avsc.12297
- Perna C, Burrows D (2005) Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Marine Pollution Bulletin 51: 138–148. https://doi.org/10.1016/j.marpolbul.2004.10.050
- Pinero-Rodríguez MJ, Fernández-Zamudio R, Arribas R, Gomez-Mestre I, Díaz-Paniagua C (2021)

 The invasive aquatic fern *Azolla filiculoides* negatively impacts water quality, aquatic vegetation and amphibian larvae in Mediterranean environments. Biological Invasions 23: 755–769. https://doi.org/10.1007/s10530-020-02402-6
- Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, Kreft H, Weigelt P, Winter M, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabesaz FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Dullinger S, Ebel AL, Figueiredo E, Fuentes N, Genovesi P, Groom QJ, Henderson L, Inderjit, Kupriyanov A, Masciadri S, Maurel N, Meerman J, Morozova O, Moser D, Nickrent D, Nowak PM, Pagad S, Patzelt A, Pelser PB, Seebens H, Shu W, Thomas J, Velayos M, Weber E, Wieringa JJ, Baptiste MP, van Kleunen M (2017) Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89: 203–274. https://doi.org/10.23855/preslia.2017.203
- Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, van Kleunen M, Vilà M, Wingfield MJ, Richardson DM (2020) Scientists' warning on invasive alien species. Biological Reviews of the Cambridge Philosophical Society 95: 1511–1534. https://doi.org/10.1111/brv.12627
- Pyšek P, Sádlo J, Chrtek J, Chytrý M, Kaplan Z, Pergl J, Pokorná A, Axmanová I, Čuda J, Doležal J, Dřevojan P, Hejda M, Kočár P, Kortz A, Lososová Z, Lustyk P, Skálová H, Štajerová K, Večeřa M, Vítková M, Wild J, Danihelka J (2022) Catalogue of alien plants of the Czech Republic (3rd edn.): Species richness, status, distributions, habitats, regional invasion levels, introduction pathways and impacts. Preslia 94: 447–577. https://doi.org/10.23855/preslia.2022.447
- R Core Team (2024) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
- Ricciardi A, MacIsaac HJ (2010) Impacts of biological invasions on freshwater ecosystems. In: Richardson DM (Ed.) Fifty years of invasion ecology: The legacy of Charles Elton. John Wiley & Sons, Hoboken, 211–224. https://doi.org/10.1002/9781444329988.ch16
- Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: Concepts and definitions. Diversity & Distributions 6: 93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x
- Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Diversity & Distributions 13: 126–139. https://doi.org/10.1111/j.1366-9516.2006.00314.x
- Román-Palacios C, Moraga-López D, Wiens JJ (2022) The origins of global biodiversity on land, sea and freshwater. Ecology Letters 25: 1376–1386. https://doi.org/10.1111/ele.13999

- Schooler SS, McEvoy PB, Coombs EM (2006) Negative per capita effects of purple loosestrife and reed canary grass on plant diversity of wetland communities. Diversity & Distributions 12: 351–363. https://doi.org/10.1111/j.1366-9516.2006.00227.x
- Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W, Dullinger S, Genovesi P, Hulme PE, van Kleunen M, Kühn I, Jeschke JM, Lenzner B, Liebhold AM, Pattison Z, Pergl J, Pyšek P, Winter M, Essl F (2021) Projecting the continental accumulation of alien species through to 2050. Global Change Biology 27: 970–982. https://doi.org/10.1111/gcb.15333
- South PM, Lilley SA, Tait LW, Alestra T, Hickford MJH, Thomsen MS, Schiel DR (2016) Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Marine and Freshwater Research 67: 103. https://doi.org/10.1071/MF14211
- Stevenson EA, Robertson P, Hickinbotham E, Mair L, Willby NJ, Mill A, Booy O, Witts K, Pattison Z (2023) Synthesising 35 years of invasive non-native species research. Biological Invasions 25: 2423–2438. https://doi.org/10.1007/s10530-023-03067-7
- Tobias VD, Conrad JL, Mahardja B, Khanna S (2019) Impacts of water hyacinth treatment on water quality in a tidal estuarine environment. Biological Invasions 21: 3479–3490. https://doi.org/10.1007/s10530-019-02061-2
- Valley RD, Bremigan MT (2002) Effects of macrophyte bed architecture on largemouth bass foraging: Implications of exotic macrophyte invasions. Transactions of the American Fisheries Society 131: 234–244. https://doi.org/10.1577/1548-8659(2002)131<0234:EOMBAO>2.0.CO;2
- van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit, Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu W, Thomas J, Velayos M, Wieringa JJ, Pyšek P (2015) Global exchange and accumulation of non-native plants. Nature 525: 100–103. https://doi.org/10.1038/nature14910
- van Kleunen M, Pyšek P, Dawson W, Essl F, Kreft H, Pergl J, Weigelt P, Stein A, Dullinger S, König C, Lenzner B, Maurel N, Moser D, Seebens H, Kartesz J, Nishino M, Aleksanyan A, Ansong M, Antonova LA, Barcelona JF, Breckle SW, Brundu G, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Conn B, De Sá Dechoum M, Dufour-Dror J, Ebel AL, Figueiredo E, Fragman-Sapir O, Fuentes N, Groom QJ, Henderson L, Inderjit, Jogan N, Krestov P, Kupriyanov A, Masciadri S, Meerman J, Morozova O, Nickrent D, Nowak A, Patzelt A, Pelser PB, Shu W, Thomas J, Uludag A, Velayos M, Verkhosina A, Villaseñor JL, Weber E, Wieringa JJ, Yazlık A, Zeddam A, Zykova E, Winter M (2019) The Global Naturalized Alien Flora (GloNAF) database. Ecology 100: e02542. https://doi.org/10.1002/ecy.2542
- Villamagna AM, Murphy BR (2010) Ecological and socio-economic impacts of invasive water hyacinth (*Eichhornia crassipes*): A review. Freshwater Biology 55: 282–298. https://doi.org/10.1111/j.1365-2427.2009.02294.x
- Von Holle BV, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86: 3212–3218. https://doi.org/10.1890/05-0427
- Waine A, Robertson P, Pattison Z (2024a) Raw water transfers: Why a global freshwater invasion pathway has been overlooked. Hydrobiologia 851: 1091–1094. https://doi.org/10.1007/s10750-023-05373-6
- Waine A, Robertson P, Pattison Z (2024b) Understanding and classifying the raw water transfer invasion pathway. Biological Invasions 26: 4035–4049. https://doi.org/10.1007/s10530-024-03432-0
- Waine A, Robertson P, Pattison Z (2025) Integrated management of the raw water transfer invasion pathway. Management of Biological Invasions: International Journal of Applied Research on Biological Invasions 16: 227–246. https://doi.org/10.3391/mbi.2025.16.1.14
- Walter H, Breckle S-W (1991) Ökologie der Erde. Band 1. Ökologische Grundlagen in globaler Sicht. Gustav Fischer, Stuttgart, 1–238.

Wu H, Ding J (2019) Global change sharpens the double-edged sword effect of aquatic alien plants in China and beyond. Frontiers in Plant Science 10: 787. https://doi.org/10.3389/fpls.2019.00787 Xie D, Yu D, You W-H, Xia C-X (2013) The propagule supply, litter layers and canopy shade in the littoral community influence the establishment and growth of *Myriophyllum aquaticum*. Biological Invasions 15: 113–123. https://doi.org/10.1007/s10530-012-0272-3

Supplementary material 1

Complete results of the indicator species analysis

Authors: Alessandra Kortz, Martin Hejda, Jan Čuda, Zarah Pattison, Josef Brůna, Ana Novoa, Jan Pergl, Pavel Pipek, Kateřina Štajerová, Paulina Anastasiu, Michael Ansong, Margarita Arianoutsou, Julie F. Barcelona, Suneeta Bhatta, Farzaneh Bordbar, Israel Borokini, Laura Celesti-Grapow, Eduardo Chacón-Madrigal, Wayne Dawson, Dorjee, Franz Essl, Lilian Ferrufino-Acosta, Estrela Figueiredo, Rodolfo Flores, Guillaume Fried, Nicol Fuentes, Pablo Galán, Christian Gilli, Michael Glaser, José Ramón Grande Allende, Zigmantas Gudžinskas, Rachael Holmes, Philip E. Hulme, Inderjit, Eun Su Kang, Holger Kreft, Dan W. Krix, Ingolf Kühn, Omar Lopez, AnaLu MacVean, Trobjon Makhkamov, Elizabete Marchante, Hélia Marchante, Alfred Maroyi, Rachid Meddour, Pierre Meerts, Sharif A. Mukul, Brad R. Murray, Megan L. Murray, Daniel L. Nickrent, Prince E. Norman, Ali Omer, Annette Patzelt, Pieter B. Pelser, Joan Pino, Marc Riera, Dagoberto Rodríguez Delcid, Julissa Rojas-Sandoval, Roser Rotchés-Ribalta, José Yader Sageth Ruiz-Cruz, Stepan Senator, Alexander N. Sennikov, Bharat Babu Shrestha, Gideon F. Smith, Barbara Tokarska-Guzik, Sima Sohrabi, Mark van Kleunen, Montserrat Vilà, Viktoria Wagner, Patrick Weigelt, Marten Winter, Ayşe Yazlık, Elena Zykova, Petr Pyšek Data type: docx

Explanation note: **table S1.** List of regions with data (region, continent, type of data extraction = literature/collaboration; data sources; data provider in case of collaboration). **table S2.** Indicator species selected for a continent or a group of continents. **table S3.** Indicator species selected for a zonobiome or a group of zonobiomes.

Copyright notice: This dataset is made available under the Open Database License (http://opendata-commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/neobiota.102.151156.suppl1